首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11498篇
  免费   1052篇
  国内免费   1154篇
  2024年   16篇
  2023年   178篇
  2022年   199篇
  2021年   652篇
  2020年   478篇
  2019年   553篇
  2018年   527篇
  2017年   401篇
  2016年   530篇
  2015年   771篇
  2014年   928篇
  2013年   925篇
  2012年   1102篇
  2011年   991篇
  2010年   566篇
  2009年   544篇
  2008年   622篇
  2007年   533篇
  2006年   418篇
  2005年   333篇
  2004年   323篇
  2003年   270篇
  2002年   259篇
  2001年   186篇
  2000年   167篇
  1999年   156篇
  1998年   111篇
  1997年   97篇
  1996年   98篇
  1995年   75篇
  1994年   84篇
  1993年   59篇
  1992年   69篇
  1991年   72篇
  1990年   51篇
  1989年   34篇
  1988年   42篇
  1987年   23篇
  1986年   31篇
  1985年   31篇
  1984年   20篇
  1983年   26篇
  1982年   16篇
  1980年   14篇
  1979年   14篇
  1977年   11篇
  1975年   13篇
  1974年   12篇
  1973年   11篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Novel arylethynyltriazole acyclonucleosides were synthesized and assessed for their anticancer activity on drug-resistant pancreatic cancer MiaPaCa-2 cells. One lead compound was found to have much more potent apoptosis-related antiproliferative effects than gemcitabine, the current first-line treatment for pancreatic cancer. Further investigations showed that this active compound did not inhibit DNA synthesis, which means that it does not resemble gemcitabine and may involve a different mechanism of action.  相似文献   
992.
A series of novel, potent PPARα/γ dual agonists were synthesized and appraised. The most potent analogue, compound 2b demonstrated EC50 value of 0.012 ± 0.002 and 0.032 ± 0.01 μM, respectively, for hPPARα and hPPARγ in transactivation assay. Additionally, compound 2b demonstrated good glucose and lipid lowering effect in genetic diabetic (db/db) mice.  相似文献   
993.
The proteolytic enzyme β-secretase (BACE1) plays a central role in the synthesis of the pathogenic β-amyloid in Alzheimer’s disease. Recently, we reported small molecule acylguanidines as potent BACE1 inhibitors. However, many of these acylguanidines have a high polar surface area (e.g. as measured by the topological polar surface area or TPSA), which is unfavorable for crossing the blood–brain barrier. Herein, we describe the identification of the 2-aminopyridine moiety as a bioisosteric replacement of the acylguanidine moiety, which resulted in inhibitors with lower TPSA values and superior brain penetration. X-ray crystallographic studies indicated that the 2-aminopyridine moiety interacts directly with the catalytic aspartic acids Asp32 and Asp228 via a hydrogen-bonding network.  相似文献   
994.
Xiang Zhou  Fan Wang 《Autophagy》2010,6(6):798-799
PIK3C3/Vps34 plays important roles in the endocytic and autophagic pathways, both of which are essential for maintaining neuronal integrity. However, it is unclear how inactivating PIK3C3 may affect neuronal endosomal versus autophagic processes in vivo. We generated a conditional null allele of the Pik3c3 gene in mouse, and specifically deleted it in postmitotic sensory neurons. Subsequent analyses reveal several interesting and surprising findings.Key words: PIK3C3/Vps34, ATG7, sensory neurons, neurodegeneration, autophagy, abnormal endosomePIK3C3 (commonly known as Vps34) is the class III phosphatidylinositol 3-kinase (PtdIns3K) that specifically catalyzes the formation of phosphatidylinositol-3-phosphate (PtdIns3P). It is the only PtdIns3K that is conserved from lower eukaryotes to mammals, and represents the most ancient form of PtdIns3Ks. Studies in invertebrate organisms as well as mammalian cell lines show that PIK3C3/Vps34 regulates multiple aspects of both the endocytic and the autophagic pathways. On one hand, PIK3C3 is important for the progression of early endosome to late endosome, and the biogenesis of multivesicular bodies. On the other hand, PIK3C3 is critical for the initiation of autophagosome formation. A chemical inhibitor of PIK3C3, 3-MA, has been commonly used as a specific inhibitor for autophagy. The distinct functions of PIK3C3 are thought to be carried out by at least two different PIK3C3 complexes. In yeast, complex I (Vps34, Vps15, Atg6 and Atg14) is involved in autophagy, whereas complex II (Vps34, Vps15, Atg6 and Vps38) functions in the vacuolar protein sorting process. In mammals, the homologue of complex I (PIK3C3, p150, Beclin 1 and Atg14L) activates autophagy, whereas the homologue of complex II (PIK3C3, p150, Beclin 1 and UVRAG/Vps38) regulates endocytic trafficking.To characterize the in vivo function of PIK3C3 in mammals, we generated a conditional allele of the Pik3c3 gene in mouse and specifically deleted it in postmitotic sensory neurons (Pik3c3-cKO mouse). We focused our analyses on sensory neurons because Pik3c3 is most abundantly expressed in these neurons. Detailed analyses of the sensory ganglia in the knockout mice reveal rapid but differential neurodegenerations of different types of sensory neurons within a few days after birth. Large-diameter myelinated mechanosensory and proprioceptive neurons undergo fast degeneration, whereas mutant small-diameter unmyelinated nociceptive neurons degenerate slower and survive longer.Interestingly, the large-diameter Pik3c3-deleted neurons rapidly accumulate ubiquitin-positive aggregates as well as numerous enlarged vesicles, which are likely abnormal endosomes. The accumulation of enlarged vesicles not only sequesters the cellular membrane source, but also could create trafficking jams that block the transport of prosurvival signals and/or material and organelles, and thus may underlie the rapid demise of large neurons. By contrast, the small-diameter Pik3c3-deleted neurons contain a limited number of vacuoles but gradually build up lysosome- like organelles. The marked increase of lysosomes seems to be more tolerable by neurons, but the mechanism underlying this phenotype is unclear. It could represent a protective and homeostatic response of neurons challenged with stress and insults to their endomembrane system. Alternatively, since sorting of many lysosomal proteins requires PtdIns3P, this phenotype may also result from a build-up of nonfunctional lysosomes as was the case in cathepsin B and L knockout mice. It is also unclear why two types of sensory neurons respond differently to a universal insult. One speculative explanation is that the large-diameter neurons are constantly activated under normal physiological conditions by touch and body movement and thus they contain more active endocytic and membrane trafficking processes; whereas small-diameter pain-sensing neurons are normally not activated and have less endocytic events. These differences might allow the two types of neurons to respond differently to PIK3C3 deletion.We further show that the fast and differential degeneration phenotypes in the Pik3c3-cKO mice are caused primarily by a disruption in the endosomal but not the autophagic pathway. This is validated by comparing the neuronal phenotypes of Pik3c3-cKO mice with those of Atg7-cKO mice, in which the autophagy-specific gene Atg7 is deleted using the same sensory neuron-specific cre driver. Disrupting autophagy leads to a slow degeneration of all types of sensory neurons over a period of several months, and formation of very large intracellular inclusion bodies in all sensory neurons. No increase of lysosomes or accumulation of enlarged vesicles is observed. The completely distinct phenotypes observed in Atg7-cKO versus Pik3c3-cKO mice suggest that inactivation of PIK3C3 primarily disrupts the endosomal pathway rather than inhibiting autophagy (at least in neurons). It calls into attention that care needs to be taken to interpret the results of using PIK3C3 inhibitors such as 3-MA as autophagy-specific inhibitors.The most surprising finding is the existence and activation of a noncanonical, PIK3C3-independent macroautophagy pathway in small-diameter Pik3c3-mutant neurons. Although PIK3C3 is traditionally viewed as indispensable for autophagy initiation, several recent studies suggest a possible PIK3C3-independent autophagy pathway in various cell lines and in Drosophila. We show that this noncanonical autophagy pathway can occur in sensory neurons in vivo using three different assays: crossing Pik3c3-cKO mice to the GFP-LC3 reporter line, western blot analyses of LC3 isoforms, and performing autophagy flux experiments. Interestingly, analyses of Pik3c3/Atg7 double-mutant neurons indicate that this alternative autophagosome initiation pathway still requires ATG7 and hence the conventional conjugation systems. Therefore, this non-canonical autophagy is distinct from the newly reported ATG5/ATG7-independent but PIK3C3-dependent autophagy. We speculate that activation of this PIK3C3-independent autophagy in small-diameter mutant neurons is part of the reason for their longer survival period.The molecular mechanism underlying the PIK3C3-independent autophagosome formation is unknown. It is possible that PtdIns3P can be generated at a low level on the membrane of pre-autophagosomes/phagophores by salvage pathways using other lipid kinases or phosphatases. Alternatively, other mechanisms may direct the formation of the crescent-shaped double membrane structures. For instance, asymmetric insertion into the membrane of proteins with amphipathic helices can induce membrane curvature; BAR domain-containing proteins can also detect and facilitate the formation of curved membrane structures. Thus, these types of proteins might potentially be recruited to nucleate the formation of pre-autophagosomes in the absence of PIK3C3. Finally, the role of this PIK3C3-independent autophagy under normal physiological conditions in vivo needs to be explored.  相似文献   
995.
Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P < 0.001). The number of TRAP+ osteoclasts in bone resorption pits, VEGF+ cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P < 0.05), while no significant difference was detected in the number of ALP+ cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.  相似文献   
996.
Upregulated gene 11 (URG11), a new gene upregulated by Heptatitis B Virus X protein (HBx), was previously shown to activate β‐catenin and promote hepatocellular growth and tumourigenesis. Although the oncogenic role of URG11 in the development of hepatocellular carcinoma has been well documented, its relevance to other human malignancies and the underlying molecular mechanisms remain largely unknown. Here we reported a novel function of URG11 to promote gastric cancer growth and metastasis. URG11 was found to be highly expressed in gastric cancer tissues compared with adjacent nontumourous ones by immunohistochemical staining and western blot. Knockdown of URG11 expression by small interfering RNA (siRNA) effectively attenuated the proliferation, anchorage‐independent growth, invasiveness and metastatic potential of gastric cancer cells. URG11 inhibition led to decreased expression of β‐catenin and its nuclear accumulation in gastric cancer cells and extensive costaining between URG11 and β‐catenin was observed in gastric cancer tissues. Transient transfection assays with the β‐catenin promoter showed that it was inhibited by URG11‐specific small inhibitory RNA. Moreover, suppression of endogenous URG11 expression results in decreased activation of β‐catenin/TCF and its downstream effector genes, cyclinD1 and membrane type 1 matrix metallopeptidase (MT1‐MMP), which are known to be involved in cell proliferation and invasion, respectively. Taken together, our data suggest that URG11 contributes to gastric cancer growth and metastasis at least partially through activation of β‐catenin signalling pathway. These findings also propose a promising target for gene therapy in gastric cancer.  相似文献   
997.
998.
Polyphyllin I (PPI), a small molecular monomer extracted from Rhizoma of Paris polyphyllin, shows strong anticancer effects in previous study. Human lung adenocarcinoma A549 cells, human lung squamous cell carcinoma SK-MES-1 cells, and human lung large cell carcinoma H460 cells were cultured and then treated with PPI. Cell proliferation and apoptosis were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, flow cytometry, western blot analysis, and DNA ladder. Athymic nude mice bearing tumors were injected with PPI, and tumor growth was recorded. Our results showed that PPI significantly inhibited the proliferation of three non-small cell lung cancer (NSCLC) cell lines, with the inhibitory concentrations (IC50) of 1.24, 2.40, and 2.33 μg/ml for A549, H460, and SK-MES-1 cells, respectively. After being treated with 2.5 μg/ml of PPI for 24 h, the apoptotic rate of A549 cells was 39.68%, which was remarkably higher than that of the control. Tumor growth was significantly inhibited in the PPI-treated group compared with the group treated with cisplatin (DDP) or PBS in the nude mice. PPI exhibits antitumor ability in NSCLC cells in vitro and in vivo, which might be related to the apoptosis induced by PPI.  相似文献   
999.
1000.
The alternative pathway is a cyanide-resistant and non-phosphorylatory electron transport pathway in mitochondria of higher plants. Alternative oxidase (AOX) is the terminal oxidase of this pathway. Our present study investigated the effect of exogenous salicylic acid (SA) on alternative pathway in cucumber (Cucumis sativus L.) seedlings under low temperature stress. Results showed that during the process of low temperature stress, the alternative pathway capacity was enhanced as AOX expression increased in SA pretreated seedlings. Compared with seedlings without SA pretreatment, slower decrease of relative water content and lower levels of electrolyte leakage, H2O2 and malonyldialdehyde content were detected in SA pretreated seedlings. These results indicated that SA could alleviate the injury caused by low temperature on cucumber seedlings. Since the special protective functions of alternative pathway and AOX in plants, we suggested that the alternative pathway was related to SA-mediated plant resistance to environmental stresses such as low temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号